SUMMER SESSIONS Research Mentorship Program

Using a Directed Energy System to Deflect Asteroids

Jana Georgieva¹ and Travis Brashears² ¹ Dos Pueblos High School, 7266 Alameda Avenue, Goleta, CA, 93117 ²Department of Physics, University of California, Santa Barbara, 93106, USA

Abstract

Asteroid impacts on or near the earth are a serious and ongoing problem. The DE-STAR project proposes using a directed energy system, in this case - a laser, to vaporize a small part of an incoming asteroid and use the resulting mass ejection to alter its trajectory away from the earth's orbit. However, different asteroid compositions produce varying amounts of thrusts that need to be considered when using this kind of propulsion system. Our project focuses on testing different samples and observing their respective thrusts.

Testing Lab Setup: Vacuum Pressure Sample Counterweight Torsion Balance Counterweight 40 Watt 808 19 Element Loser Array 0 1 2

Inside of vacuum chamber

Tests:

- **Regular Ablation**
- Power Test
- Pressure Test

DE-STAR

Deflecting Asteroids

An exaggerated vision of the DE-STAR project in use: A modular array of lasers is focused on an asteroid.

Idea Behind DE-STAR:

- Phased array laser placed in earth's orbit
 - Solar-powered
- Direct at incoming asteroid, cause ablation
 - Specific spot heats up
 - Results in mass ejection plume
- Asteroid is propelled in opposite direction
- Asteroid's trajectory is altered so as not to interfere with

- Measurements are taken by detector outside of vacuum chamber
- Torsion balance holds sample and hangs from the fiber

• Tuff

Materials:

• Peridotite

• Zinc Sulfide

Container used to hold the crushed basalt for testing

Transmittance:

The amount of the laser that the sample absorbs 100 versus the amount that passes through.

The transmittance spectra for quartz.

the earth

No collision!

Ablation of porous basalt resulting in a mass ejection plume.

Ultimate Goal:

Create an automated system to deflect asteroids using the correct amount of thrust

NASA gives us a miss distance of one earth diameter in order to ensure a reasonable safety margin. The graph on the left shows how long it would take different powered lasers to deflect asteroids to the desired distance.

Power Test for different forms of basalt. During all tests, the laser's amps were increased every minute in order to see the difference in thrust at every Watt level.

Asteroids generally do not have a uniform composition.

• They are covered in a sandy regolith layer that

Porous Basalt being

environment.

ablated in a space-like

All the materials we have tested, with the exception of Tuff, are materials commonly found in an asteroid. We plan to use this data and to test more common asteroid composition materials to create and improve a database of materials for the DE-STAR project.

Conceptual design of the deployed spacecraft with two 15 m PV arrays that produce 50 kW each at the beginning of life for a total of 100 kW.

References [1] Lubin, P., Hughes, G.B., Bible, J., Bublitz, J., Arriola, J., Motta, C., Suen, J., Johansson, I., Riley, J., Sarvian, N., Clayton-Warwick, D., Wu, J., Milich, A., Oleson, M., Pryor, M., Krogen, P., Kangas, M., and O'Neill, H. "Toward Directed Energy Planetary Defense," Optical Engineering, Vol. 53, No. 2, (2014).

Nanophotonics and Macrophotonics for Space Environments VIII, edited by Edward W. Taylor, David A. Cardimona, Proc. of SPIE Vol. 9226 (Aug, 2014). [3] Glasstone, S., and Dolan, P. The Effects of Nuclear Weapons, Third Edition, Washington: Department of Defense, 1977, ch. 2. [4] Brown, P., Spalding, R. E., ReVelle, D. O., Tagliaferri, E., & Worden, S. P. (2002). "The flux of small near-Earth objects colliding with the Earth." Nature, 420(6913), 294-296. [5] Morrison, D, Harris, A.W., Sommer, G., Chapman, C.R. and Carusi, A. "Dealing with the impact hazard." Asteroids III (ed. W. Bottke et al., Univ. Ariz. Press) (2002): 739-754. [6] Koenig, J.D., and Chyba, C.F. "Impact deflection of potentially hazardous asteroids using current launch". [7] Popova, O.P., Jenniskens, P., Emel'yanenko, V., et al. "Chelyabinsk Airburst, Damage

Assessment, Meteorite Recovery, and Characterization," Science: Vol. 342 no. 6162 pp. 1069-1073, 29 November 2013.

Acknowledgements

[2] Johansson, I.E., Tsareva, T., Griswold, J., Lubin, P., Hughes, G.B., O'Neill, H.,

Meinhold, P., Suen, J., Zhang, Q., J., Riley, J. Walsh, K., Brashears, T., Bollag, J.,

Mathew, S. and Bible, J. "Effects of asteroid rotation on directed energy deflection,"

We gratefully acknowledge funding from the NASA California Space Grant NASA NNX10AT93H in support of this research. A special thanks to our professor, Phil Lubin, my mentor, Travis Brashears, my unofficial mentor, Payton Batliner and my lab partners, Aidan Gilkes, Kenyon Prater, Bret Silverstein and Olivia Sturman. I would also like to acknowledge the rest of the deepspace lab and their contributions to my project. For more info: http://www.deepspace.ucsb.edu